Premium
Stem cell factor‐activated bone marrow ameliorates amyotrophic lateral sclerosis by promoting protective microglial migration
Author(s) -
Terashima Tomoya,
Kojima Hideto,
Urabe Hiroshi,
Yamakawa Isamu,
Ogawa Nobuhiro,
Kawai Hiromichi,
Chan Lawrence,
Maegawa Hiroshi
Publication year - 2014
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.23368
Subject(s) - amyotrophic lateral sclerosis , stem cell factor , microglia , neuroprotection , tumor necrosis factor alpha , stem cell , medicine , bone marrow , stem cell therapy , cancer research , immunology , haematopoiesis , biology , inflammation , pathology , microbiology and biotechnology , disease
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with motor neuron death. Several experimental treatments, including cell therapy using hematopoietic or neuronal stem cells, have been tested in ALS animal models, but therapeutic benefits have been modest. Here we used a new therapeutic strategy, bone marrow transplantation (BMT) with stem cell factor (SCF)‐ or FMS‐like tyrosine kinase 3 (flt3)‐activated bone marrow (BM) cells for the treatment of hSOD1(G93A) transgenic mice. Motor function and survival showed greater improvement in the SCF group than in the group receiving BM cells that had not been activated (BMT alone group), although no improvement was shown in the flt3 group. In addition, larger numbers of BM‐derived cells that expressed the microglia marker Iba1 migrated to the spinal cords of recipient mice compared with the BMT‐alone group. Moreover, after SCF activation, but not flt3 activation or no activation, the migrating microglia expressed glutamate transporter‐1 (GLT‐1). In spinal cords in the SCF group, inflammatory cytokines tumor necrosis factor‐α and interleukin‐1β were suppressed and the neuroprotective molecule insulin‐like growth factor‐1 increased relative to nontreatment hSOD1(G93A) transgenic mice. Therefore, SCF activation changed the character of the migrating donor BM cells, which resulted in neuroprotective effects. These studies have identified SCF‐activated BM cells as a potential new therapeutic agent for the treatment of ALS. © 2014 Wiley Periodicals, Inc.