z-logo
Premium
Corticotropin‐releasing factor‐2 activation prevents gentamicin‐induced oxidative stress in cells derived from the inner ear
Author(s) -
Basappa Johnvesly,
Turcan Sevin,
Vetter Douglas E.
Publication year - 2010
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.22449
Subject(s) - cochlea , oxidative stress , inner ear , microbiology and biotechnology , reactive oxygen species , signal transduction , receptor , endogeny , ototoxicity , proteomics , programmed cell death , chemistry , biology , neuroscience , apoptosis , endocrinology , biochemistry , gene , genetics , chemotherapy , cisplatin
Generation of reactive oxygen species (ROS) is a common denominator in many conditions leading to cell death in the cochlea, yet little is known of the cochlea's endogenous mechanisms involved in preventing oxidative stress and its consequences in the cochlea. We have recently described a corticotropin‐releasing factor (CRF) signaling system in the inner ear involved in susceptibility to noise‐induced hearing loss. We use biochemical and proteomics assays to define further the role of CRF signaling in the response of cochlear cells to aminoglycoside exposure. We demonstrate that activity via the CRF 2 class of receptors protects against aminoglycoside‐induced ROS production and activation of cell death pathways. This study suggests for the first time a role for CRF signaling in protecting the cochlea against oxidative stress, and our proteomics data suggest novel mechanisms beyond induction of free radical scavengers that are involved in its protective mechanisms. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here