z-logo
Premium
Molecular chaperone‐mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain
Author(s) -
Sahara N.,
Maeda S.,
Yoshiike Y.,
Mizoroki T.,
Yamashita S.,
Murayama M.,
Park J.M.,
Saito Y.,
Murayama S.,
Takashima A.
Publication year - 2007
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.21417
Subject(s) - chaperone (clinical) , neurodegeneration , heat shock protein , microbiology and biotechnology , tau protein , hsp90 , hsp27 , chemistry , intracellular , protein aggregation , biology , hsp70 , biochemistry , alzheimer's disease , gene , pathology , medicine , disease
Abstract Intracellular accumulation of filamentous tau proteins is a defining feature of neurodegenerative diseases termed tauopathies . The pathogenesis of tauopathies remains largely unknown. Molecular chaperones such as heat shock proteins (HSPs), however, have been implicated in tauopathies as well as in other neurodegenerative diseases characterized by the accumulation of insoluble protein aggregates. To search for in vivo evidence of chaperone‐related tau protein metabolism, we analyzed human brains with varying degrees of neurofibrillary tangle (NFT) pathology, as defined by Braak NFT staging. Quantitative analysis of soluble protein levels revealed significant positive correlations between tau and Hsp90, Hsp40, Hsp27, α‐crystallin, and CHIP. An inverse correlation was observed between the levels of HSPs in each specimen and the levels of granular tau oligomers, the latter of which were isolated from brain as intermediates of tau filaments. We speculate that HSPs function as regulators of soluble tau protein levels, and, once the capacity of this chaperone system is saturated, granular tau oligomers form virtually unabated. This is expressed pathologically as an early sign of NFT formation. The molecular basis of chaperone‐mediated protection against neurodegeneration might lead to the development of therapeutics for tauopathies. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here