z-logo
Premium
Identification and characterization of Caenorhabditis elegans palmitoyl protein thioesterase1
Author(s) -
Porter Morwenna Y.,
Turmaine Mark,
Mole Sara E.
Publication year - 2005
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.20403
Subject(s) - biology , caenorhabditis elegans , pathogenesis , neuronal ceroid lipofuscinosis , batten disease , phenotype , mutation , genetics , microbiology and biotechnology , mitochondrion , gene , immunology
Infantile neuronal ceroid lipofuscinosis (INCL; Batten disease) is a severe neurodegenerative disorder of childhood characterized by the accumulation of autofluorescent storage material in lysosomes. It is caused by mutation of the CLN1/PPT1 gene, which encodes the lysosomal enzyme palmitoyl protein thioesterase‐1 (PPT1), but the mechanism of disease pathogenesis and substrates for the enzyme are unknown. Caenorhabditis elegans is a simple nematode worm, with a fully sequenced genome, which is easy to maintain and manipulate. It has a completely mapped cell lineage and nervous system and has already provided clues about the pathogenesis of several human neuronal and lysosomal storage disorders. We have identified and characterized a PPT1 homologue in C. elegans . We found that, although this gene was not essential for the animal's survival, its mutation resulted in a mild developmental and reproductive phenotype, affected the number and size of mitochondria, and resulted in an abnormality in mitochondrial morphology, possibly suggestive of a role for this organelle in INCL pathogenesis. This strain, deleted for ppt‐1 , potentially provides a model system for the study of PPT1 and the pathogenesis of INCL. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom