z-logo
Premium
Caloric restriction augments brain glutamic acid decarboxylase‐65 and ‐67 expression
Author(s) -
Cheng Clara M.,
Hicks Kristin,
Wang Jie,
Eagles Douglas A.,
Bondy Carolyn A.
Publication year - 2004
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.20144
Subject(s) - ketogenic diet , glutamate decarboxylase , medicine , endocrinology , calorie restriction , epilepsy , calorie , cerebral cortex , biology , cortex (anatomy) , striatum , chemistry , neuroscience , dopamine , biochemistry , enzyme
The ketogenic diet is a very low‐carbohydrate, high‐fat diet used to treat refractory epilepsy. We hypothesized that this diet may act by increasing expression of glutamic acid decarboxylase (GAD), the rate‐limiting enzyme in γ‐aminobutyric acid (GABA) synthesis. Thus, we evaluated brain GAD levels in a well‐established, seizure‐suppressing, rodent model of the ketogenic diet. Because the diet is most effective when administered with a modest (∼10%) calorie restriction, we studied three groups of animals: rats fed ad libitum standard rat chow (Ad lib‐Std); calorie‐restricted standard chow (CR‐Std); and an isocaloric, calorie‐restricted ketogenic diet (CR‐Ket). We found that GAD67 mRNA was significantly increased in the inferior and superior colliculi and cerebellar cortex in both CR diet groups compared with control (e.g., by 45% in the superior colliculus and by 71% in the cerebellar cortex; P < .001). GAD65 mRNA was selectively increased in the superior colliculus and temporal cortex in both CR‐Std and CR‐Ket diet groups compared with ad lib controls. The only apparent CR‐Ket‐specific effect was a 30% increase in GAD67 mRNA in the striatum ( P = .03). Enhanced GAD immunoreactivity was detected in parallel with the mRNA changes. These data clearly show that calorie restriction increases brain GAD65 and ‐67 expression in several brain regions, independent of ketogenic effects. These observations may explain why caloric restriction improves the efficacy of the ketogenic diet in treating epilepsy and suggest that diet modification might be useful in treatment of a number of brain disorders characterized by impaired GAD or GABA activity. © 2004 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here