Premium
Expression of the myelin and oligodendrocyte progenitor marker sulfatide in neurons and astrocytes of adult rat brain
Author(s) -
Pernber Zarah,
MolanderMelin Marie,
Berthold ClaesHenric,
Hansson Elisabeth,
Fredman Pam
Publication year - 2002
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.10264
Subject(s) - immunostaining , oligodendrocyte , myelin , astrocyte , biology , microbiology and biotechnology , cerebellum , central nervous system , progenitor cell , neuroscience , neuroglia , immunohistochemistry , immunology , stem cell
Abstract Sulfatide is a myelin component of the central (CNS) and peripheral nervous system (PNS) and is used extensively to identify oligodendrocyte progenitor cells. We have explored sulfatide expression in CNS gray matter (cerebellum, cerebral cortex, and hippocampus) and the PNS in adult rats using an anti‐sulfatide antibody (Sulph I) and confocal microscopy. Biochemical analyses revealed two Sulph I antigens, sulfatide and seminolipid; sulfatide was present at about five times higher concentration, and the affinity of Sulph I for sulfatide was 2.5 times higher than that for seminolipid. Thus sulfatide was considered the dominant antigen. We found Sulph I immunostaining, in addition to that in myelinated areas in subpopulations of astrocytes and neurons. Astrocyte Sulph I staining was localized to the cell bodies and in some cases also to the processes. In the cerebellum, some Sulph I‐positive astrocytes corresponded to Golgi epithelial cell bodies. We also found Sulph I staining in neuronal cell bodies, which in some neurons was clearly localized to the cytoplasm and in others to the nuclear membrane. Sulph I immunostaining in the PNS was located in the myelin sheath and paranodal end segments. These results demonstrate the expression of sulfatide in cell types other than oligodendrocytes and Schwann cells, showing that sulfatide is not a selective marker for adult oligodendrocyte progenitor cells. Moreover, these findings show that sulfatide is localized also to intracellular compartments and indicate that other roles of sulfatide in astrocytes and neurons, compared to myelin, might be considered. © 2002 Wiley‐Liss, Inc.