z-logo
Premium
Ketogenic diet, amino acid metabolism, and seizure control
Author(s) -
Yudkoff Marc,
Daikhin Yevgeny,
Nissim Ilana,
Lazarow Adam,
Nissim Itzhak
Publication year - 2001
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.10083
Subject(s) - glutamine , ketosis , ketogenic diet , glutamate receptor , transamination , amino acid , ketone bodies , metabolism , biochemistry , glutamic acid , chemistry , biology , pharmacology , epilepsy , endocrinology , neuroscience , receptor , diabetes mellitus
The ketogenic diet has been utilized for many years as an adjunctive therapy in the management of epilepsy, especially in those children for whom antiepileptic drugs have not permitted complete relief. The biochemical basis of the dietary effect is unclear. One possibility is that the diet leads to alterations in the metabolism of brain amino acids, most importantly glutamic acid, the major excitatory neurotransmitter. In this review, we explore the theme. We present evidence that ketosis can lead to the following: 1) a diminution in the rate of glutamate transamination to aspartate that occurs because of reduced availability of oxaloacetate, the ketoacid precursor to aspartate; 2) enhanced conversion of glutamate to GABA; and 3) increased uptake of neutral amino acids into the brain. Transport of these compounds involves an uptake system that exchanges the neutral amino acid for glutamine. The result is increased release from the brain of glutamate, particularly glutamate that had been resident in the synaptic space, in the form of glutamine. These putative adaptations of amino acid metabolism occur as the system evolves from a glucose‐based fuel economy to one that utilizes ketone bodies as metabolic substrates. We consider mechanisms by which such changes might lead to the antiepileptic effect. © 2001 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here