z-logo
Premium
An improvement in the calculation of the magnetic field for an arbitrary geometry coil with rectangular cross section Int. J. Numer. Model . 2005; 18 (6):493–504
Author(s) -
Babic Slobodan I.,
Akyel Cevdet
Publication year - 2008
Publication title -
international journal of numerical modelling: electronic networks, devices and fields
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 30
eISSN - 1099-1204
pISSN - 0894-3370
DOI - 10.1002/jnm.675
Subject(s) - section (typography) , geometry , field (mathematics) , cross section (physics) , volume (thermodynamics) , mathematics , mathematical analysis , physics , calculus (dental) , computer science , pure mathematics , thermodynamics , quantum mechanics , operating system , medicine , dentistry
The above article was published in Volume 18, Issue 6, Pages 493–504, (October 2005). A number of imperfections were subsequently identified and have been corrected below. On page 497, the following equation has been corrected to:\documentclass{article} \footskip=0pc\pagestyle{empty} \begin{document} \begin{eqnarray*} S_{xn} & = & \left\{ t\,\sinh^{-1}\,\frac{t\,\sin(\theta) + R\,\cos(\theta)}{\cos(\theta) \sqrt{t^{2} + Q^{2}}} + R\,\cos(\theta)\,\sinh^{-1}\,\frac{t + R\,\sin(\theta)\,\cos (\theta)}{\cos(\theta)\sqrt{R^{2}\,\cos^{2}(\theta) + Q^{2}}}\right.\\ && \left. \left. + Q\,\tan^{-1}\,\frac{Q^{2}\,\sin(\theta) - tR\,\cos(\theta)}{Q\sqrt{t^{2} + 2Rt\,\sin(\theta)\,\cos(\theta) + (R^{2} + Q^{2})\,\cos^{2}(\theta)}}\right\} \right|_{t = L_{1}}^{t = L_{2}} \end{eqnarray*}\end{document}On page 501, the following equation has been corrected to:\documentclass{article} \footskip=0pc\pagestyle{empty} \begin{document} \begin{eqnarray*} I_{x1} & = & \int\nolimits_{-d}^{d} I_{y1}\,{\rm{d}} x' = \left[ t\,\sinh^{-1} \,\frac{t\,\sin(\theta) + R\,\cos(\theta)}{\cos(\theta)\sqrt{t^{2} + Q^{2}}} + R\,\cos(\theta)\,\sinh^{-1}\,\frac{t + R\,\sin(\theta)\,\cos(\theta)} {\cos(\theta)\sqrt{R^{2}\,\cos^{2}(\theta) + Q^{2}}}\right.\\ && \left. \left. + Q\,\tan^{-1}\,\frac{Q^{2}\,\sin(\theta) - tR\,\cos(\theta)}{Q\sqrt{t^{2} + 2Rt\,\sin(\theta)\,\cos(\theta) + (R^{2} + Q^{2})\,\cos^{2}(\theta)}} \right]\right|_{t = L_{1}}^{t = L_{2}} \end{eqnarray*}\end{document}On page 502, the following equation has been corrected to:\documentclass{article} \footskip=0pc\pagestyle{empty} \begin{document} \begin{eqnarray*} I_{z2} & = & \int\nolimits_{- c}^{c} I_{x2}\,{\rm{d}} x' = \left\{ t\,\sin(\theta) \,\sinh^{-1}\,\frac{L + R\,\sin(\theta)\,\cos(\theta)}{\cos(\theta) \sqrt{t^{2} + R^{2}\,\cos^{2}(\theta)}} - t\,\sinh^{-1}\, \frac{L\,\sin(\theta) + R\,\cos(\theta)}{\cos(\theta) \sqrt{t^{2} + L^{2}}}\right. \\ && - R\,\cos^{2}(\theta)\,\sinh^{-1}\,\frac{t\,\cos(\theta)}{\sqrt{L^{2} + 2LR\,\sin(\theta)\,\cos(\theta) + R^{2}\,\cos^{2}(\theta)}}\\ && - R\,\sin(\theta)\,\cos(\theta)\,\tan^{-1}\, \frac{t(L + R\,\sin(\theta)\,\cos(\theta))} {R\,\cos(\theta)\sqrt{t^{2}\,\cos^{2}(\theta) + L^{2} + 2LR\,\sin(\theta) \,\cos(\theta) + R^{2}\,\cos^{2}(\theta)}}\\ && \left. \left. + L\,\tan^{-1}\, \frac{t(L\,\sin(\theta) + R\,\cos(\theta))}{L\sqrt{t^{2}\,\cos^{2}(\theta) + L^{2} + 2LR\,\sin(\theta)\,\cos(\theta) + R^{2}\,\cos^{2}(\theta)}} \right\} \right|_{t = Q_{1}}^{t = Q_{2}} \end{eqnarray*}\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom