z-logo
Premium
Theory of characteristic modes for lossy structures: Formulation and interpretation of eigenvalues
Author(s) -
YläOijala Pasi,
Wallén Henrik,
Järvenpää Seppo
Publication year - 2019
Publication title -
international journal of numerical modelling: electronic networks, devices and fields
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 30
eISSN - 1099-1204
pISSN - 0894-3370
DOI - 10.1002/jnm.2627
Subject(s) - eigenvalues and eigenvectors , lossy compression , integral equation , mathematical analysis , mathematics , physics , quantum mechanics , statistics
Volume integral equation (VIE) and surface integral equation (SIE) based characteristic mode (CM) formulations are investigated in the case of lossy objects. Imperfectly conducting metallic structures modelled with an impedance boundary condition and lossy dielectric bodies are considered. Two types of CM formulations are studied. In the first one, the generalized eigenvalue equation is expressed in terms of the Hermitian parts of the integral operators. In the second one, the weighting operator of the eigenvalue equation is defined so that the eigenvectors form a weighted orthogonal set, weighted with respect to radiated power. The first approach gives real eigensolutions and is found to lead to clustering of the eigenvalues as losses are increased. From these solutions it is difficult to separate contributions of radiated, reactive, and dissipated power. This separation appears naturally in the second approach that gives complex eigensolutions. As applications including lossy materials, CM analyses of a graphene sheet and a plasmonic nanoparticle are presented.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here