Premium
Commutation modelling and sparks reduction based on coupled circuit method
Author(s) -
Kelaiaia Mounia Samira,
Labar Hocine,
Bounaya Kamel,
Kelaiaia Samia,
Mesbah Tarek
Publication year - 2012
Publication title -
international journal of numerical modelling: electronic networks, devices and fields
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 30
eISSN - 1099-1204
pISSN - 0894-3370
DOI - 10.1002/jnm.1845
Subject(s) - commutation , brush , commutator , transformer , electrical engineering , commutation cell , control theory (sociology) , computer science , engineering , voltage , mathematics , switched mode power supply , geometry , control (management) , lie group , artificial intelligence , constant power circuit , lie conformal algebra
SUMMARY The commutating machines have a notable effect on the exchanges in brush–commutator contact area, which is particularly obvious when determining the intensity of sparks located on the brush. With time, higher current density at the descending edge promote sparks excitation, which itself increases intensity of the electrical erosion, brush temperature and thus also the wear. So in order to make an analytical study of commutation phenomenon, the coupled circuit method was developed. Therefore, a generalized mathematical model of the commutation, for brush–commutator, is established and can be extended for any other types of commutation on the basis of electromagnetic field (e.g. transformers and phase shift transformer. This model provides a greater efficiency to explain the impact of the electromagnetic fluxes surrounding brush area (or switch), specially for the current transition of the commutation process. Successful commutation is defined as operation in normal service, with no serious damages to the commutator, brushes or switches due to sparking that might require abnormal maintenance. It is recognized that some visible sparking are not evidence of unsuccessful commutation. The recommendation to improve the commutation (to achieve longer brush life) is the implementation of the proposal (slotted brush), which provides a linear and a sweet transition of currents in the coils of commutation. Copyright © 2012 John Wiley & Sons, Ltd.