z-logo
Premium
SARS‐CoV‐2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG‐I/MDA‐5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways
Author(s) -
Han Lulu,
Zhuang MengWei,
Deng Jian,
Zheng Yi,
Zhang Jing,
Nan MeiLing,
Zhang XueJing,
Gao Chengjiang,
Wang PeiHui
Publication year - 2021
Publication title -
journal of medical virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 121
eISSN - 1096-9071
pISSN - 0146-6615
DOI - 10.1002/jmv.27050
Subject(s) - trif , irf3 , signal transducing adaptor protein , mda5 , tlr3 , sendai virus , interferon , virology , biology , signal transduction , innate immune system , sting , microbiology and biotechnology , rig i , tank binding kinase 1 , viral replication , virus , rna interference , rna , immunology , toll like receptor , biochemistry , immune system , gene , protein kinase c , mitogen activated protein kinase kinase , aerospace engineering , engineering
The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) contributes to the pathogenesis of coronavirus disease 2019 (COVID‐19). The strategy used by SARS‐CoV‐2 to evade antiviral immunity needs further investigation. Here, we reported that SARS‐CoV‐2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS‐CoV‐2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS‐CoV‐2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA‐sensing pathways of RIG‐I/MDA5‐MAVS signaling, including RIG‐I, MDA‐5, MAVS, TBK1, and IKKε, rather than IRF3‐5D, which is the active form of IRF3. SARS‐CoV‐2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA‐sensing pathway of TLR3‐TRIF signaling and the adaptor protein of the cytosolic DNA‐sensing pathway of cGAS–STING signaling, respectively. A mechanistic analysis revealed that the SARS‐CoV‐2 ORF9b protein interacted with RIG‐I, MDA‐5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS‐CoV‐2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS‐CoV‐2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS‐CoV‐2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID‐19.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here