Premium
Can molecular mimicry explain the cytokine storm of SARS‐CoV‐2?: An in silico approach
Author(s) -
ObandoPereda Gustavo
Publication year - 2021
Publication title -
journal of medical virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 121
eISSN - 1096-9071
pISSN - 0146-6615
DOI - 10.1002/jmv.27040
Subject(s) - in silico , molecular mimicry , cytokine storm , biology , epitope , immune system , cytokine , mimicry , virology , antigen , inflammation , computational biology , microbiology and biotechnology , covid-19 , immunology , genetics , gene , disease , infectious disease (medical specialty) , medicine , ecology , pathology
PARP14 and PARP9 play a key role in macrophage immune regulation. SARS‐CoV‐2 is an emerging viral disease that triggers hyper‐inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS‐CoV‐2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS‐CoV‐2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper‐inflammatory state in SARS‐CoV‐2 patients.