Premium
Environmental and decontamination issues for human coronaviruses and their potential surrogates
Author(s) -
Cimolai Nevio
Publication year - 2020
Publication title -
journal of medical virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 121
eISSN - 1096-9071
pISSN - 0146-6615
DOI - 10.1002/jmv.26170
Subject(s) - virology , covid-19 , human decontamination , coronavirus infections , coronavirus , betacoronavirus , sars virus , biology , medicine , outbreak , infectious disease (medical specialty) , disease , pathology
Pandemic coronavirus disease‐2019 (COVID‐19) gives ample reason to generally review coronavirus (CoV) containment. For establishing some preliminary views on decontamination and disinfection, surrogate CoVs have commonly been assessed. This review serves to examine the existing science in regard to CoV containment generically and then to translate these findings into timely applications for COVID‐19. There is widespread dissemination of CoVs in the immediate patient environment, and CoVs can potentially be spread via respiratory secretions, urine, and stool. Interpretations of the spread however must consider whether studies examine for viral RNA, virus viability by culture, or both. Presymptomatic, asymptomatic, and post‐14 day virus excretion from patients may complicate the epidemiology. Whereas droplet spread is accepted, there continues to be controversy over the extent of possible airborne spread and especially now for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). CoVs are stable in body secretions and sewage at reduced temperatures. In addition to temperature, dryness or relative humidity, initial viral burden, concomitant presence of bioburden, and the type of surface can all affect stability. Generalizing, CoVs can be susceptible to radiation, temperature extremes, pH extremes, peroxides, halogens, aldehydes, many solvents, and several alcohols. Whereas detergent surfactants can have some direct activity, these agents are better used as complements to a complex disinfectant solution. Disinfectants with multiple agents and adverse pH are more likely to be best active at higher water temperatures. Real‐life assessments should be encouraged with working dilutions. The use of decontamination and disinfection should be balanced with considerations of patient and caregiver safety. Processes should also be balanced with considerations for other potential pathogens that must be targeted. Given some CoV differences and given that surrogate testing provides experimental correlates at best, direct assessments with SARS‐CoV, Middle East respiratory syndrome‐related coronavirus (MERS‐CoV), and SARS‐CoV‐2 are required.