Premium
Optimization of group size in pool testing strategy for SARS‐CoV‐2: A simple mathematical model
Author(s) -
AragónCaqueo Diego,
FernándezSalinas Javier,
Laroze David
Publication year - 2020
Publication title -
journal of medical virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 121
eISSN - 1096-9071
pISSN - 0146-6615
DOI - 10.1002/jmv.25929
Subject(s) - group testing , test strategy , context (archaeology) , outbreak , medicine , pandemic , diagnostic test , covid-19 , statistics , virology , disease , mathematics , biology , veterinary medicine , infectious disease (medical specialty) , computer science , paleontology , software , combinatorics , programming language
Coronavirus disease (Covid‐19) has reached unprecedented pandemic levels and is affecting almost every country in the world. Ramping up the testing capacity of a country supposes an essential public health response to this new outbreak. A pool testing strategy where multiple samples are tested in a single reverse transcriptase‐polymerase chain reaction (RT‐PCR) kit could potentially increase a country's testing capacity. The aim of this study is to propose a simple mathematical model to estimate the optimum number of pooled samples according to the relative prevalence of positive tests in a particular healthcare context, assuming that if a group tests negative, no further testing is done whereas if a group tests positive, all the subjects of the group are retested individually. The model predicts group sizes that range from 11 to 3 subjects. For a prevalence of 10% of positive tests, 40.6% of tests can be saved using testing groups of four subjects. For a 20% prevalence, 17.9% of tests can be saved using groups of three subjects. For higher prevalences, the strategy flattens and loses effectiveness. Pool testing individuals for severe acute respiratory syndrome coronavirus 2 is a valuable strategy that could considerably boost a country's testing capacity. However, further studies are needed to address how large these groups can be, without losing sensitivity on the RT‐PCR. The strategy best works in settings with a low prevalence of positive tests. It is best implemented in subgroups with low clinical suspicion. The model can be adapted to specific prevalences, generating a tailored to the context implementation of the pool testing strategy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom