Premium
Phylogenetic analysis of probable Non‐human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil
Author(s) -
Maestri Régis Piloni,
Kaiano Jane Haruko Lima,
Neri Darivaldo Luz,
Soares Luana da Silva,
Guerra Sylvia de Fatima dos Santos,
Oliveira Darleise de Souza,
Farias Yasmin Nascimento,
Gabbay Yvone Benchimol,
Leite José Paulo Gagliardi,
Linhares Alexandre da Costa,
Mascarenhas Joana D'Arc Pereira
Publication year - 2012
Publication title -
journal of medical virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.782
H-Index - 121
eISSN - 1096-9071
pISSN - 0146-6615
DOI - 10.1002/jmv.23364
Subject(s) - reassortment , biology , virology , phylogenetic tree , gene , genome , acute gastroenteritis , genetics , polymerase chain reaction , rotavirus , genotype , virus , medicine , disease , pathology , covid-19 , infectious disease (medical specialty)
Rotaviruses (RVs) are the main cause of acute viral gastroenteritis in both humans and young animals of various species such as calves, horses, pigs, dogs, cats, and birds. The genetic diversity of RVs is related to a variety of evolutionary mechanisms, including point mutation, and genome reassortment. The objective of this study was to characterize molecularly genes that encode structural and nonstructural proteins in unusual RV strains. The clinical specimens selected for this study were obtained from children and newborn with RV gastroenteritis, who participated in research projects on viral gastroenteritis conducted at the Evandro Chagas Institute. Structural ( VP1 ‐ VP4 , VP6 , and VP7 ) and nonstructural ( NSP1 ‐ NSP6 ) genes were amplified from stool samples by the polymerase chain reaction and subsequently sequenced. Eight unusual RV strains isolated from children and newborn with gastroenteritis were studied. Reassortment between genes of animal origin were observed in 5/8 (62.5%) strains analyzed. These results demonstrate that, although rare, interspecies (animal–human) transmission of RVs occurs in nature, as observed in the present study in strains NB150, HSP034, HSP180, HST327, and RV10109. This study is the first to be conducted in the Amazon region and supports previous data showing a close relationship between genes of human and animal origin, representing a challenge to the large‐scale introduction of RV vaccines in national immunization programs. J. Med. Virol. 84:1993–2002, 2012. © 2012 Wiley Periodicals, Inc.