z-logo
Premium
Untargeted analysis of pure snail slime and snail slime‐induced Au nanoparticles metabolome with MALDI FT‐ICR MS
Author(s) -
Onzo Alberto,
Pascale Raffaella,
Acquavia Maria Assunta,
Cosma Pinalysa,
Gubitosa Jennifer,
Gaeta Carmine,
Iannece Patrizia,
Tsybin Yury,
Rizzi Vito,
Guerrieri Antonio,
Ciriello Rosanna,
Bianco Giuliana
Publication year - 2021
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.4722
Subject(s) - chemistry , snail , metabolome , sulfur , biochemistry , organic chemistry , metabolite , biology , ecology
Abstract Chronic wounds result from the failure of the normal wound healing process. Any delay during the tissue repair process could be defined as chronic wound healing, potentially having a highly detrimental impact on human health. To face this problem, in the last years, the use of different technologies alternative to therapeutic agents is gaining more attention. The Helix aspersa snail slime‐based products are increasingly being used for skin injury, thanks to their ability to make tissue repair processes faster. To date, a comprehensive overview of pure snail slime metabolome is not available. Besides, Au nanoparticles (AuNPs) technology is spreading rapidly in the medical environment, and the search for AuNPs “green” synthetic routes that involve natural products as precursor agents is demanded, alongside with a deep comprehension of the kind of species that actively take part in synthesis and product stabilization. The aim of this work is to characterize the metabolic profile of a pure snail slime sample, by an untargeted high‐resolution mass spectrometry‐based analysis. In addition, insights on AuNPs synthesis and stabilization by the main components of pure snail slime used to induce the synthesis were obtained. The untargeted analysis provided a large list of important classes of metabolites, that is, fatty acid derivatives, amino acids and peptides, carbohydrates and polyphenolic compounds that could be appreciated in both samples of slime, with and without AuNPs. Moreover, a direct comparison of the obtained results suggests that mostly nitrogen and sulfur‐bearing metabolites take part in the synthesis and stabilization of AuNPs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here