z-logo
Premium
Study of the noncovalent interactions of ginsenosides and amyloid‐β‐peptide by CSI‐MS and molecular docking
Author(s) -
Zhou Yanan,
Chen Su,
Qiao Jinping,
Cui Yanyun,
Yuan Chang,
He Lan,
Ouyang Jin
Publication year - 2020
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.4463
Subject(s) - chemistry , docking (animal) , peptide , stereochemistry , amyloid β , combinatorial chemistry , computational chemistry , biochemistry , disease , medicine , nursing , pathology
Noncovalent interactions between drugs and proteins play significant roles for drug metabolisms and drug discoveries. Mass spectrometry has been a commonly used method for studying noncovalent interactions. However, the harsh ionization process in electrospray ionization mass spectrometry (ESI‐MS) is not conducive to the preservation of noncovalent and unstable biomolecular complexes compared with the cold spray ionization mass spectrometry (CSI‐MS). A cold spray ionization providing a stable solvation‐ionization at low temperature is milder than ESI, which was more suitable for studying noncovalent drug‐protein complexes with exact stoichiometries. In this paper, we apply CSI‐MS to explore the interactions of ginsenosides toward amyloid‐β‐peptide (Aβ) and clarify the therapeutic effect of ginsenosides on Alzheimer's disease (AD) at the molecular level for the first time. The interactions of ginsenosides with Aβ were performed by CSI‐MS and ESI‐MS, respectively. The ginsenosides Rg1 bounded to Aβ at the stoichiometries of 1:1 to 5:1 could be characterized by CSI‐MS, while dehydration products are more readily available by ESI‐MS. The binding force depends on the number of glycosyls and the type of ginsenosides. The relative binding affinities were sorted in order as follows: Rg1 ≈ Re > Rd ≈ Rg2 > Rh2, protopanaxatriol by competition experiments, which were supported by molecular docking experiment. CSI‐MS is expected to be a more appropriate approach to determine the weak but specific interactions of proteins with other natural products especially polyhydroxy compounds.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here