Premium
Mass spectrometric detection of the Gibbs reaction for phenol analysis
Author(s) -
Mistry Sabyasachy,
Wenthold Paul G.
Publication year - 2018
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.4261
Subject(s) - chemistry , substituent , phenols , gibbs free energy , electronegativity , reagent , phenol , derivatization , organic chemistry , mass spectrometry , chromatography , thermodynamics , physics
This paper describes a new method for detecting phenols, by reaction with Gibbs reagent to form indophenols, followed by mass spectrometric detection. Unlike the standard Gibbs reaction, which uses a colorometric approach, the use of mass spectrometry allows for simultaneous detection of differently substituted phenols. The procedure is demonstrated to work for a large variety of phenols without para ‐substitution. With para ‐substituted phenols, Gibbs products are still often observed, but the specific product depends on the substituent. For para groups with high electronegativity, such as methoxy or halogens, the reaction proceeds by displacement of the substituent. For groups with lower electronegativity, such as amino or alkyl groups, Gibbs products are observed that retain the substituent, indicating that the reaction occurs at the ortho or meta position. In mixtures of phenols, the relative intensities of the Gibbs products are proportional to the relative concentrations, and concentrations as low as 1 μmol/L can be detected. The method is applied to the qualitative analysis of commercial liquid smoke, and it is found that hickory and mesquite flavors have significantly different phenolic composition.