Premium
Chip‐based high resolution tandem mass spectrometric determination of fibroblast growth factor—chondroitin sulfate disaccharides noncovalent interaction
Author(s) -
Robu Adrian C.,
Popescu Laurentiu,
Seidler Daniela G.,
Zamfir Alina D.
Publication year - 2018
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.4193
Subject(s) - chemistry , disaccharide , chondroitin sulfate , tandem mass spectrometry , glycosaminoglycan , fibroblast growth factor , heparan sulfate , mass spectrometry , chromatography , biophysics , biochemistry , biology , receptor
Abstract Fibroblast growth factor‐2 (FGF‐2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF‐GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration. Lately, high resolution mass spectrometry (MS) coupled with chip‐nanoelectrospray (nanoESI) contributed a significant progress in glycosaminoglycomics by discoveries related to novel species and their characterization. We have employed a fully automated chip‐nanoESI coupled to a quadrupole time‐of‐flight (QTOF) MS for assessing FGF‐GAG noncovalent complexes. For the first time, a CS disaccharide was involved in a binding assay with FGF‐2. The experiments were conducted in 10 mM ammonium acetate/formic acid, pH 6.8, by incubating FGF‐2 and CS in buffer. The detected complexes were characterized by top‐down in tandem MS (MS/MS) using collision induced‐dissociation (CID). CID MS/MS provided data showing for the first time that the binding process occurs via the sulfate group located at C4 in GalNAc. This study has demonstrated that chip‐MS may generate reliable data upon the formation of GAG‐protein complexes and their structure. Biologically, the findings are relevant for studies focused on the identification of the active domains in longer GAG chains.