Premium
Evaluation of relative MS response factors of drug metabolites for semi‐quantitative assessment of chemical liabilities in drug discovery
Author(s) -
Blanz Joachim,
Williams Gareth,
Dayer Jerôme,
Délémonté Thierry,
Gertsch Werner,
Ramstein Philippe,
Aichholz Reiner,
Trunzer Markus,
Pearson David
Publication year - 2017
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.3918
Subject(s) - chemistry , metabolite , biotransformation , drug discovery , drug , drug metabolism , chromatography , mass spectrometry , primary metabolite , pharmacology , metabolism , biochemistry , enzyme , medicine
Drug metabolism studies are performed in drug discovery to identify metabolic soft spots, detect potentially toxic or reactive metabolites and provide an early insight into potential species differences. The relative peak area approach is often used to semi‐quantitatively estimate the abundance of metabolites. Differences in the liquid chromatography‐mass spectrometry responses result in an underestimation or overestimation of the metabolite and misinterpretation of results. The relative MS response factors (RF) of 132 structurally diverse drug candidates and their 233 corresponding metabolites were evaluated using a capillary‐liquid chromatography/high‐resolution mass spectrometry system. All of the synthesized metabolites discussed here were previously identified as key biotransformation products in discovery investigations or predicted to be formed. The most commonly occurring biotransformation mechanisms such as oxygenation, dealkylation and amide cleavage are represented within this dataset. However, relatively few phase II metabolites were evaluated because of the limited availability of authentic standards. Approximately 85% of these metabolites had a relative RF in the range between 0.2 (fivefold under‐prediction) and 2.0 (twofold over‐prediction), and the median MS RF was 0.6. Exceptions to this included very small metabolites that were hardly detectable. Additional experiments performed to understand the impact of the MS platform, flow rate and concentration suggested that these parameters do not have a significant impact on the RF of the compounds tested. This indicates that the use of relative peak areas to semi‐quantitatively estimate the abundance of metabolites is justified in the drug discovery setting in order to guide medicinal chemistry efforts. Copyright © 2017 John Wiley & Sons, Ltd.