Premium
Commercial formaldehyde standard for mass calibration in mass spectrometry
Author(s) -
Lyczko Jadwiga,
Beach Daniel G.,
Gabryelski Wojciech
Publication year - 2015
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.3550
Subject(s) - chemistry , mass spectrometry , electrospray ionization , analytical chemistry (journal) , calibration , mass , formaldehyde , tandem mass spectrometry , electrospray , selected reaction monitoring , mass spectrum , chromatography , organic chemistry , statistics , mathematics
Common calibration standards for mass spectrometry can be a source of many problems including instrument contamination, ionization suppression and formation of unidentified ions during subsequent analysis. In this article, we present a new approach for the calibration of mass analyzers such as a quadrupole–time‐of‐flight mass spectrometry using a diluted solution of commercial formaldehyde. Formaldehyde is an inexpensive and commonly used solvent, and its intrinsic polymerization leads to the formation of polyoxymethylene (POM) oligomers, which are excellent multiple calibration standards for a low‐mass spectral region (up to m / z 400) in the positive and negative mode of electrospray ionization. We explore the nature and origin of these polymeric species and attributed them to chemical reactions of formaldehyde and stabilizing agents in commercial formaldehyde solutions and during electrospray ionization. In contrast to other calibrants, POM oligomers do not contaminate the instrument and can easily be removed from the sample delivery system. Using tandem mass spectrometry, we elucidate the structures of the detected POM oligomers and report their reference masses, which are tightly spaced by 30 mass units. In our calibration method, mass errors of <5 ppm can be obtained from m/z 20–400 using external calibration with a simple one‐point zero‐order correction of spectral data and without the need for operation of a dual spray or internal calibrants. Our approach will be particularly useful for those interested in the analysis of fragile ions with low m / z values and can function at instrumental conditions required for analysis of the most labile metabolites and environmental contaminants. Copyright © 2015 John Wiley & Sons, Ltd.