z-logo
Premium
‘Wrong‐way‐round ionization’ and screening for doping substances in human urine by high‐performance liquid chromatography/orbitrap mass spectrometry
Author(s) -
Virus E. D.,
Sobolevsky T. G.,
Rodchenkov G. M.
Publication year - 2012
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.2055
Subject(s) - chemistry , orbitrap , chromatography , mass spectrometry , direct electron ionization liquid chromatography–mass spectrometry interface , urine , high performance liquid chromatography , ionization , chemical ionization , ion , organic chemistry , biochemistry
To free analytical resources for new classes of doping substances, such as banned proteins, maximization of the number of compounds that can be determined with high sensitivity in a single run is highly urgent. This study demonstrates an application of ‘wrong‐way‐round ionization’ for the simultaneous detection of multiple classes of doping substances without the need to switch the polarity. A screening method for the detection of 137 compounds from various classes of prohibited substances (stimulants, diuretics, β 2 ‐agonists, β‐blockers, antiestrogens, glucocorticosteroids and anabolic agents) has been developed. The method involves an enzymatic hydrolysis, liquid–liquid extraction and detection by liquid chromatography/orbitrap mass spectrometry with wrong‐way‐round ionization. Up to 64% of compounds had a 10‐fold lower limit of detection (LOD) than the minimum required performance limit. To compare the efficiency of conventional ionization relative to wrong‐way‐round ionization of doping substances in + ESI, a fortified blank urine sample at the minimum required performance limit was analyzed using two ESI approaches. All compounds were detected with markedly better S/N in a high‐pH mobile phase, with the exception of acetazolamide (minimal change in S/N, < 20%).The method was validated by spiking 10 different blank urine samples at five different concentrations. Validation parameters included the LOD, selectivity, ion suppression, extraction recovery and repeatability. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom