z-logo
Premium
High‐throughput UHPLC–MS/MS method for the detection, quantification and identification of fifty‐five anabolic and androgenic steroids in equine plasma
Author(s) -
Guan Fuyu,
Uboh Cornelius E.,
Soma Lawrence R.,
You Youwen,
Liu Ying,
Li Xiaoqing
Publication year - 2010
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.1816
Subject(s) - chemistry , chromatography , detection limit , nandrolone , mass spectrometry , triple quadrupole mass spectrometer , tandem mass spectrometry , selected reaction monitoring , anabolism , biochemistry
Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high‐throughput ultra high‐performance liquid chromatography–mass spectrometric (UHPLC–MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid–liquid extraction with methyl tert ‐butyl ether (MTBE). Analytes were chromatographically separated on a sub‐2 µm particle size C 18 column with a mobile phase gradient elution and detected by selected‐reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor‐to‐product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base‐line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100–500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100–500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here