z-logo
Premium
Chemical cross‐linking with a diazirine photoactivatable cross‐linker investigated by MALDI‐ and ESI‐MS/MS
Author(s) -
Gomes Alexandre F.,
Gozzo Fabio C.
Publication year - 2010
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.1776
Subject(s) - chemistry , diazirine , linker , chromatography , matrix assisted laser desorption/ionization , organic chemistry , photochemistry , adsorption , desorption , operating system , computer science
Crystallography and nuclear magnetic resonance are well‐established methods to study protein tertiary structure and interactions. Despite their usefulness, such methods are not applicable to many protein systems. Chemical cross‐linking of proteins coupled with mass spectrometry allows low‐resolution characterization of proteins and protein complexes based on measuring distance constraints from cross‐links. In this work, we have investigated cross‐linking by means of a heterobifunctional cross‐linker containing a traditional N ‐hydroxysuccinimide (NHS) ester and a UV photoactivatable diazirine group. Activation of the diazirine group yields a highly reactive carbene species, with potential to increase the number of cross‐links compared with homobifunctional, NHS‐based cross‐linkers. Cross‐linking reactions were performed on model systems such as synthetic peptides and equine myoglobin. After reduction of the disulfide bond, the formation of intra‐ and intermolecular cross‐links was identified and the peptides modified with both NHS and diazirine moieties characterized. Fragmentation of these modified peptides reveals the presence of a marker ion for intramolecular cross‐links, which facilitates identification. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here