z-logo
Premium
Identification of carbonylation sites in apomyoglobin after exposure to 4‐hydroxy‐2‐nonenal by solid‐phase enrichment and liquid chromatography–electrospray ionization tandem mass spectrometry
Author(s) -
Rauniyar Navin,
ProkaiTatrai Katalin,
Prokai Laszlo
Publication year - 2010
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.1725
Subject(s) - chemistry , electrospray ionization , tandem mass spectrometry , mass spectrometry , chromatography , carbonylation , collision induced dissociation , protein carbonylation , dissociation (chemistry) , organic chemistry , lipid peroxidation , antioxidant , carbon monoxide , catalysis
Identification of protein carbonylation because of covalent attachment of a lipid peroxidation end‐product was performed by combining proteolytic digestion followed by solid‐phase hydrazide enrichment and liquid chromatography (LC)–electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using both collision‐induced dissociation (CID) and electron capture dissociation (ECD). To evaluate this approach, we selected apomyoglobin and 4‐hydroxy‐2‐nonenal (4‐HNE) as a model protein and a representative end‐product of lipid peroxidation, respectively. Although the characteristic elimination of 4‐HNE (156 Da) in CID was found to serve as a signature tag for the modified peptides, generation of nearly complete fragment ion series because of efficient peptide backbone cleavage (in most cases over 75%) and the capability to retain the labile 4‐HNE moiety of the tryptic peptides significantly aided the elucidation of primary structural information and assignment of exact carbonylation sites in the protein, when ECD was employed. We have concluded that solid‐phase enrichment with both CID‐ and ECD‐MS/MS are advantageous during an in‐depth interrogation and unequivocal localization of 4‐HNE‐induced carbonylation of apomyoglobin that occurs via Michael addition to its histidine residues. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here