Premium
Flavonoid–matrix cluster ions in MALDI mass spectrometry
Author(s) -
Madeira Paulo J. Amorim,
Florêncio M. Helena
Publication year - 2009
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.1588
Subject(s) - chemistry , protonation , mass spectrum , mass spectrometry , luteolin , kaempferol , ion , tandem mass spectrometry , molecule , matrix assisted laser desorption/ionization , cluster (spacecraft) , polyatomic ion , analytical chemistry (journal) , flavonoid , chromatography , organic chemistry , desorption , adsorption , computer science , programming language , antioxidant
The behaviour of 2,5‐dihydroxybenzoic acid (2,5‐DHB) matrix under matrix‐assisted laser desorption/ionisation (MALDI) conditions was investigated, and the formation of 2,5‐DHB cluster ions, mainly dehydrated 2,5‐DHB ions, is reported. Interestingly, in the mass spectra of this compound, besides dimers and trimers, protonated tetramers, pentamers, hexamers and heptamers were also found with significant abundance. The MALDI behaviour of four flavonoids, quercetin, myricetin, luteolin and kaempferol, using 2,5‐DHB as matrix, was also investigated. The mass spectra of the flavonoids studied revealed a number of flavonoid–2,5‐DHB cluster ions (mainly with the dehydrated 2,5‐DHB). The number of clusters formed is dependent on the structure of the analyte. For luteolin and kaempferol, in particular, evidence was found for the formation of cluster ions involving retro Diels Alder fragments and intact flavonoids molecules, as well as the corresponding protonated retro Diels Alder fragments with dehydrated DHB molecules. All ion compositions were attributed taking into account high accuracy mass measurements and tandem mass spectrometry experiments. Copyright © 2009 John Wiley & Sons, Ltd.