Premium
Organization of nucleobase‐functionalized β‐peptides investigated by soft electrospray ionization mass spectrometry
Author(s) -
Diezemann Nicola,
Weigang Linda M. M.,
Chakraborty Pradip,
Frauendorf Holm,
Letzel Thomas,
Diederichsen Ulf
Publication year - 2009
Publication title -
journal of mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 121
eISSN - 1096-9888
pISSN - 1076-5174
DOI - 10.1002/jms.1557
Subject(s) - chemistry , infrared multiphoton dissociation , nucleobase , fourier transform ion cyclotron resonance , non covalent interactions , electrospray ionization , mass spectrometry , tandem mass spectrometry , biomolecule , dissociation (chemistry) , collision induced dissociation , molecule , hydrogen bond , analytical chemistry (journal) , chromatography , dna , organic chemistry , biochemistry
The development and validation of analytical methods is a key to succeed in investigating noncovalent interactions between biomolecules or between small molecules and biomolecules. Electrospray ionization mass spectrometry (ESI‐MS) was applied with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR‐MS) as well as a quadrupole/time‐of‐flight tandem mass spectrometer (QqToF‐MS) for a systematic investigation of noncovalent complexes based on nucleobase pairing in an artificial and noncharged backbone topology. Synthetical β‐peptide helices covalently modified with nucleobases were organized by recognition of a sequence of four nucleobases. Specific duplexes of β‐peptide helices were obtained on the basis of hydrogen bonding base pair complementarity. Oligomer interactions were detected with defined stoichiometry and sensitivity for the respective duplex stability. FTICR‐MS and QqToF‐MS were used equally well to indicate double strand stabilities in agreement with the dissociation data determined by UV spectroscopy. Furthermore, the dissociation energies of gas phase ions of the noncovalent complexes were analyzed with collision induced dissociation (CID)‐MS/MS and infrared multiphoton dissociation (IRMPD)‐MS/MS. The CID conditions turned out to be too harsh for a differentiation of the duplex stabilities, whereas IRMPD might be developed as a technique to detect even small interaction energy differences. Copyright © 2009 John Wiley & Sons, Ltd.