z-logo
Premium
Deep Learning Based on MRI for Differentiation of Low‐ and High‐Grade in Low‐Stage Renal Cell Carcinoma
Author(s) -
Zhao Yijun,
Chang Marcello,
Wang Robin,
Xi Ianto Lin,
Chang Ken,
Huang Raymond Y,
Vallières Martin,
Habibollahi Peiman,
Dagli Mandeep S.,
Palmer Matthew,
Zhang Paul J.,
Silva Alvin C.,
Yang Li,
Soulen Michael C.,
Zhang Zishu,
Bai Harrison X.,
Stavropoulos S. William
Publication year - 2020
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.27153
Subject(s) - receiver operating characteristic , medicine , renal cell carcinoma , exact test , clear cell renal cell carcinoma , mann–whitney u test , confidence interval , stage (stratigraphy) , carcinoma , nuclear medicine , radiology , urology , pathology , paleontology , biology
Background Pretreatment determination of renal cell carcinoma aggressiveness may help to guide clinical decision‐making. Purpose To evaluate the efficacy of residual convolutional neural network using routine MRI in differentiating low‐grade (grade I–II) from high‐grade (grade III–IV) in stage I and II renal cell carcinoma. Study Type Retrospective. Population In all, 376 patients with 430 renal cell carcinoma lesions from 2008–2019 in a multicenter cohort were acquired. The 353 Fuhrman‐graded renal cell carcinomas were divided into a training, validation, and test set with a 7:2:1 split. The 77 WHO/ISUP graded renal cell carcinomas were used as a separate WHO/ISUP test set. Field Strength/Sequence 1.5T and 3.0T/T 2 ‐weighted and T 1 contrast‐enhanced sequences. Assessment The accuracy, sensitivity, and specificity of the final model were assessed. The receiver operating characteristic (ROC) curve and precision‐recall curve were plotted to measure the performance of the binary classifier. A confusion matrix was drawn to show the true positive, true negative, false positive, and false negative of the model. Statistical Tests Mann–Whitney U ‐test for continuous data and the chi‐square test or Fisher's exact test for categorical data were used to compare the difference of clinicopathologic characteristics between the low‐ and high‐grade groups. The adjusted Wald method was used to calculate the 95% confidence interval (CI) of accuracy, sensitivity, and specificity. Results The final deep‐learning model achieved a test accuracy of 0.88 (95% CI: 0.73–0.96), sensitivity of 0.89 (95% CI: 0.74–0.96), and specificity of 0.88 (95% CI: 0.73–0.96) in the Fuhrman test set and a test accuracy of 0.83 (95% CI: 0.73–0.90), sensitivity of 0.92 (95% CI: 0.84–0.97), and specificity of 0.78 (95% CI: 0.68–0.86) in the WHO/ISUP test set. Data Conclusion Deep learning can noninvasively predict the histological grade of stage I and II renal cell carcinoma using conventional MRI in a multiinstitutional dataset with high accuracy. Level of Evidence 3 Technical Efficacy Stage 2

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here