z-logo
Premium
Comparison of visceral adipose tissue quantification on water suppressed and nonwater‐suppressed MRI at 3.0 tesla
Author(s) -
Zhou Anqi,
Murillo Horacio,
Cusi Kenneth,
Peng Qi
Publication year - 2012
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.23582
Subject(s) - reproducibility , magnetic resonance imaging , nuclear medicine , limits of agreement , medicine , nuclear magnetic resonance , biomedical engineering , chemistry , radiology , chromatography , physics
Purpose: To systematically evaluate and compare the performance of water‐saturated and nonwater‐saturated T1‐weighted 3.0 T magnetic resonance imaging (MRI) in the application of visceral adipose tissue (VAT) quantification. Materials and Methods: Forty‐five patients underwent abdomen MRI using two different sequences at 3.0 T: 1) a traditional T1‐weighted gradient echo sequence, and 2) the same sequence with water presaturation to enhance fat and nonfat contrast. VAT amounts from both water‐saturated and nonwater‐saturated images were quantified with a manual thresholding technique and an automated segmentation method to study quantification variability and consistency of the two imaging techniques. Results: Nonwater‐saturated MRI had significantly larger coefficient of variation than water‐saturated MRI in the imaging reproducibility study based on 112 slices from seven subjects (11.4% vs. 2.5%, P < 0.0001). VAT volumes measured from the nonwater‐saturation MRI sequence had significantly higher variability than those from water‐saturation images even when using a manual quantification method based on images from 38 subjects (1.76% vs. 1.08%, P < 0.001). In addition, the VAT volume amounts from nonwater‐saturation images and water‐saturated images quantified with the automatic and manual quantification methods were statistically consistent. Conclusion: Water‐saturated MRI sequences at 3.0 T for VAT quantification improve reproducibility and decrease variability compared with nonwater saturated sequences, especially with the use of automatic quantification methods. J. Magn. Reson. Imaging 2012;35:1445–1452. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom