Premium
Pilot study of improved lesion characterization in breast MRI using a 3D radial balanced SSFP technique with isotropic resolution and efficient fat‐water separation
Author(s) -
Moran Catherine J.,
Kelcz Frederick,
Jung Youngkyoo,
Brodsky Ethan K.,
Fain Sean B.,
Block Walter F.
Publication year - 2009
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.21807
Subject(s) - steady state free precession imaging , magnetic resonance imaging , nuclear magnetic resonance , nuclear medicine , lesion , isotropy , radiology , medicine , physics , optics , pathology
Purpose To assess a 3D radial balanced steady‐state free precession (SSFP) technique that provides submillimeter isotropic resolution and inherently registered fat and water image volumes in comparison to conventional T2‐weighted RARE imaging for lesion characterization in breast magnetic resonance imaging (MRI). Materials and Methods 3D projection SSFP (3DPR‐SSFP) combines a dual half‐echo radial k‐space trajectory with a linear combination fat/water separation technique (linear combination SSFP). A pilot study was performed in 20 patients to assess fat suppression and depiction of lesion morphology using 3DPR‐SSFP. For all patients fat suppression was measured for the 3DPR‐SSFP image volumes and depiction of lesion morphology was compared against corresponding T2‐weighted fast spin echo (FSE) datasets for 15 lesions in 11 patients. Results The isotropic 0.63 mm resolution of the 3DPR‐SSFP sequence demonstrated improved depiction of lesion morphology in comparison to FSE. The 3DPR‐SSFP fat and water datasets were available in a 5‐minute scan time while average fat suppression with 3DPR‐SSFP was 71% across all 20 patients. Conclusion 3DPR‐SSFP has the potential to improve the lesion characterization information available in breast MRI, particularly in comparison to conventional FSE. A larger study is warranted to quantify the effect of 3DPR‐SSFP on specificity. J. Magn. Reson. Imaging 2009;30:135–144. © 2009 Wiley‐Liss, Inc.