z-logo
Premium
Ultrashort TE spectroscopic imaging (UTESI): Application to the imaging of short T2 relaxation tissues in the musculoskeletal system
Author(s) -
Du Jiang,
Takahashi Atsushi M.,
Chung Christine B.
Publication year - 2009
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.21465
Subject(s) - nuclear magnetic resonance , cadaveric spasm , scanner , materials science , image resolution , resolution (logic) , biomedical engineering , nuclear medicine , pulse sequence , optics , physics , computer science , medicine , anatomy , artificial intelligence
Purpose To investigate ultrashort TE spectroscopic imaging (UTESI) of short T2 tissues in the musculoskeletal (MSK) system. Materials and Methods Ultrashort TE pulse sequence is able to detect rapidly decaying signals from tissues with a short T2 relaxation time. Here a time efficient spectroscopic imaging technique based on a multiecho interleaved variable TE UTE acquisition is proposed for high‐resolution spectroscopic imaging of the short T2 tissues in the MSK system. The projections were interleaved into multiple groups with the data for each group being collected with progressively increasing TEs. The small number of projections in each group sparsely but uniformly sampled k‐space. Spectroscopic images were generated through Fourier transformation of the time domain images at variable TEs. T2* was quantified through exponential fitting of the time domain images or line shape fitting of the magnitude spectrum. The feasibility of this technique was demonstrated in volunteer and cadaveric specimen studies on a clinical 3T scanner. Results UTESI was applied to six cadaveric specimens and four human volunteers. High spatial resolution and contrast images were generated for the deep radial and calcified layers of articular cartilage, menisci, ligaments, tendons, and entheses, respectively. Line shape fitting of the UTESI magnitude spectroscopic images show a short T2* of 1.34 ± 0.56 msec, 4.19 ± 0.68 msec, 3.26 ± 0.34 msec, 1.96 ± 0.47 msec, and 4.21 ± 0.38 msec, respectively. Conclusion UTESI is a time‐efficient method to image and characterize the short T2 tissues in the MSK system with high spatial resolution and high contrast. J. Magn. Reson. Imaging 2009;29:412–421. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here