Premium
Echo combination to reduce proton resonance frequency (PRF) thermometry errors from fat
Author(s) -
Rieke Viola,
Butts Pauly Kim
Publication year - 2008
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.21238
Subject(s) - echo (communications protocol) , imaging phantom , gradient echo , residual , nuclear magnetic resonance , materials science , spin echo , magnetic resonance imaging , nuclear medicine , biomedical engineering , physics , computer science , algorithm , optics , medicine , radiology , computer network
Purpose To validate echo combination as a means to reduce errors caused by fat in temperature measurements with the proton resonance frequency (PRF) shift method. Materials and Methods Computer simulations were performed to study the behavior of temperature measurement errors introduced by fat as a function of echo time. Error reduction by combining temperature images acquired at different echo times was investigated. For experimental verification, three echoes were acquired in a refocused gradient echo acquisition. Temperature images were reconstructed with the PRF shift method for the three echoes and then combined in a weighted average. Temperature measurement errors in the combined image and the individual echoes were compared for pure water and different fractions of fat in a computer simulation and for a phantom containing a homogenous mixture with 20% fat in an MR experiment. Results In both simulation and MR measurement, the presence of fat caused severe temperature underestimation or overestimation in the individual echoes. The errors were substantially reduced after echo combination. Residual errors were about 0.3°C for 10% fat and 1°C for 20% fat. Conclusion Echo combination substantially reduces temperature measurement errors caused by small fractions of fat. This technique then eliminates the need for fat suppression in tissues such as the liver. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc.