z-logo
Premium
Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation
Author(s) -
Yu Huanzhou,
McKenzie Charles A.,
Shimakawa Ann,
Vu Anthony T.,
Brau Anja C.S.,
Beatty Philip J.,
Pineda Angel R.,
Brittain Jean H.,
Reeder Scott B.
Publication year - 2007
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.21090
Subject(s) - imaging phantom , steatosis , computer science , ideal (ethics) , biomedical engineering , algorithm , pattern recognition (psychology) , materials science , mathematics , artificial intelligence , nuclear medicine , medicine , philosophy , epistemology
Purpose To describe and demonstrate the feasibility of a novel multiecho reconstruction technique that achieves simultaneous water‐fat decomposition and T2* estimation. The method removes interference of water‐fat separation with iron‐induced T2* effects and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload. Materials and Methods The algorithm called “T2*‐IDEAL” is based on the IDEAL water‐fat decomposition method. A novel “complex field map” construct is used to estimate both R2* (1/T2*) and local B 0 field inhomogeneities using an iterative least‐squares estimation method. Water and fat are then decomposed from source images that are corrected for both T2* and B 0 field inhomogeneity. Results It was found that a six‐echo multiecho acquisition using the shortest possible echo times achieves an excellent balance of short scan and reliable R2* measurement. Phantom experiments demonstrate the feasibility with high accuracy in R2* measurement. Promising preliminary in vivo results are also shown. Conclusion The T2*‐IDEAL technique has potential applications in imaging of diffuse liver disease for evaluation of both hepatic steatosis and iron overload in a single breath‐hold. J. Magn. Reson. Imaging 2007;26:1153–1161. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom