Premium
Effects of spatial distribution on proton relaxation enhancement by particulate iron oxide
Author(s) -
Tanimoto Akihiro,
Pouliquen Daniel,
Kreft Burkhard P.,
Stark David D.
Publication year - 1994
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.1880040506
Subject(s) - particulates , proton , materials science , iron oxide , distribution (mathematics) , nuclear magnetic resonance , chemistry , metallurgy , physics , nuclear physics , mathematics , mathematical analysis , organic chemistry
The proton relaxation effect of superparamagnetic iron oxide (SPIO) particles under varying conditions of spatial distribution was investigated with use of phantoms. Agar phantoms containing various concentrations of SPIO or gadopentetate dimeglumine, with and without Sephadex beads, were studied. Phantoms with Sephadex had a heterogeneous spatial distribution of iron oxide, comparable to liver tissue in vivo. Relaxometry at 0.47 T showed decreased T2 relaxivity of SPIO in Sephadex phantoms compared with that in agar phantoms without Sephadex. On T2‐weighted images obtained at 1.5 T, the signal intensity of Sephadex phantoms showed less SPIO relaxation effect than that of plain agar phantoms. Unlike SPIO, gadopentetate dimeglumine showed the same relaxivities and signal intensity in plain agar and Sephadex phantoms. The results show that the T2 relaxation effect of iron oxide depends on its spatial distribution. A heterogeneous spatial distribution, as in intact liver tissue, diminishes the T2 relaxivity of iron oxide particles.