z-logo
Premium
Diffusion tensor imaging: Concepts and applications
Author(s) -
Le Bihan Denis,
Mangin JeanFrançois,
Poupon Cyril,
Clark Chris A.,
Pappata Sabina,
Molko Nicolas,
Chabriat Hughes
Publication year - 2001
Publication title -
journal of magnetic resonance imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.563
H-Index - 160
eISSN - 1522-2586
pISSN - 1053-1807
DOI - 10.1002/jmri.1076
Subject(s) - diffusion mri , white matter , magnetic resonance imaging , computer science , tractography , diffusion imaging , diffusion , fractional anisotropy , anisotropic diffusion , neuroscience , nuclear magnetic resonance , physics , medicine , artificial intelligence , psychology , radiology , image (mathematics) , thermodynamics
The success of diffusion magnetic resonance imaging (MRI) is deeply rooted in the powerful concept that during their random, diffusion‐driven displacements molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. As diffusion is truly a three‐dimensional process, molecular mobility in tissues may be anisotropic, as in brain white matter. With diffusion tensor imaging (DTI), diffusion anisotropy effects can be fully extracted, characterized, and exploited, providing even more exquisite details on tissue microstructure. The most advanced application is certainly that of fiber tracking in the brain, which, in combination with functional MRI, might open a window on the important issue of connectivity. DTI has also been used to demonstrate subtle abnormalities in a variety of diseases (including stroke, multiple sclerosis, dyslexia, and schizophrenia) and is currently becoming part of many routine clinical protocols. The aim of this article is to review the concepts behind DTI and to present potential applications. J. Magn. Reson. Imaging 2001;13:534–546. © 2001 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here