Premium
Proteins, recognition networks and developing interfaces for macromolecular biosensing
Author(s) -
Sergi Mauro,
Zurawski John,
Cocklin Simon,
Chaiken Irwin
Publication year - 2004
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.671
Subject(s) - biosensor , nanotechnology , molecular recognition , identification (biology) , computer science , computational biology , human–computer interaction , chemistry , biology , materials science , botany , organic chemistry , molecule
Genomics and proteomics discovery is leading to the identification of all proteins and to the opportunity, and challenge, to reveal the protein recognition networks that drive virtually all biological processes. Over the past decade, biosensors have emerged as a key technology for detection and analysis of biomolecular interactions. An important limitation in developing such biosensors is that the focus has been mainly on sensor platforms, the transducing hardware that converts interaction signals into recorded data, without adequately considering the role of molecular interfaces, the elements of sensors that interact with analytes to produce signals. We have investigated this alternative focus by identifying and, where necessary, designing molecular interfaces that will more effectively drive new biosensor development and utilization in biomedical and biotechnological investigations. Here we describe our recent studies of coiled coil and lipid bilayer interfaces and the potential to use these to expand sensing technologies for multiplexed target detection and analysis in increasingly biologically relevant membrane like environments. Copyright © 2004 John Wiley & Sons, Ltd.