z-logo
Premium
Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product
Author(s) -
Peters Günther H.,
Bywater Robert P.
Publication year - 2002
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.579
Subject(s) - chemistry , substrate (aquarium) , molecular dynamics , chemical physics , covalent bond , hydrogen bond , van der waals force , stereochemistry , computational chemistry , molecule , organic chemistry , oceanography , geology
As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition‐state mimic. We have applied a classical approach, using molecular dynamics simulations to monitor protein dynamics in the nanosecond regime. We filter out small amplitude fluctuations and focus on the anharmonic contributions to the overall dynamics. This ‘essential dynamics’ analysis reveals different modes of response along the pathway suggesting that binding, catalysis and product clearance occur along different energy surfaces. Motions in the enzyme with a covalently attached ligand are more complex and occur along several eigenvectors. The magnitudes of the fluctuations in these individual subspaces are significantly smaller than those observed for the substrate and product molecules, indicating that the energy surface is shallow and that a relatively large number of conformational substates are accessible. On the other hand, substrate binding and product release occur at distinct modes of the protein flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond network involving in particular Ser82, which may be a potential cause of product inhibition. Considerations such as these should aid the understanding of mechanisms of substrate, inhibitor or product recognition and could become of importance in the design of new substrates or inhibitors for enzymes. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here