z-logo
Premium
Temporal analysis of metabolic systems and its application to metabolite channelling
Author(s) -
Easterby John S.
Publication year - 1993
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.300060406
Subject(s) - channelling , metabolite , kinetic energy , chemistry , flux (metallurgy) , transition state , metabolic control analysis , enzyme kinetics , substrate (aquarium) , biological system , biophysics , physics , chemical physics , enzyme , biochemistry , active site , biology , ion , classical mechanics , ecology , organic chemistry , insulin , endocrinology , catalysis
When a metabolic system undergoes a transition between steady states, the lag or transition time of the system is determined by the aggregated lifetimes of the metabolite pools. This allows the transition time, and hence the temporal responsiveness of the system, to be estimated from a knowledge of the starting and finishing steady states and obviates the need for dynamic measurements. The analysis of temporal response in metabolic systems may be integrated with the general field of metabolic control analysis by the definition of a temporal control coefficient ( C   ei τ ) in terms of flux and concentration control coefficients. The temporal control coefficient exhibits summation and other properties analogous to the flux and concentration control coefficients. For systems in which static metabolite channels exits, the major kinetic advantage of channelling is a reduction in pool sizes and, as a result, a more rapid system response reflected in a reduced transition time. The extent of the channelling advantage may therefore be assessed from a knowledge of the system transition time. This reveals that no channelling advantage is achieved at high enzyme concentration (i.e., comparable to K m ) or, in the case of ‘leaky’ channels, where rapid equilibrium kinetic mechanisms obtain. In the case of a perfect channel with no leakage and direct transfer of metabolite between adjacent enzyme active sites, the transition time is minimized and equal to the lifetime of the enzyme–substrate complex.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here