z-logo
Premium
Structural insights into the intramolecular interactions of centromere protein CENP‐I
Author(s) -
Zhang Yu,
Zhao Congcong,
Cao Beibei,
Ye Jingjing,
Huang Hao,
Hu Liqiao,
Tian Wei,
He Xiaojing
Publication year - 2020
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.2837
Subject(s) - centromere , kinetochore , intramolecular force , chromosome segregation , helix (gastropod) , mitosis , biology , microbiology and biotechnology , genetics , chromosome , biophysics , chemistry , stereochemistry , gene , ecology , snail
In mitosis, the accurate segregation of sister chromosomes relies on kinetochore, a multiple subunits complex assembled on centromere of each sister chromosome. As a core component of inner kinetochore, CENP‐I plays important functions to mediate kinetochore assembly and supports the faithful chromosome segregation. The structures of the N‐terminus and C‐terminus of CENP‐I homologs in complex with CENP‐H/K have been reported, respectively. Unfortunately, the intramolecular interactions of CENP‐I are poorly understood, and how CENP‐I interacts with CENP‐M remains unknown. Here, we verified a unique helix α11, which forms the intramolecular interactions with N‐terminal HEAT repeats in fungal CENP‐I. Deletion of the helix α11 exposed the hydrophobic surface and resulted in the in vitro protein aggregation of N‐terminal HEAT repeats of fungal CENP‐I. The corresponding helix and its intramolecular interaction are highly conserved in human CENP‐I. Deletion of the corresponding helix in human CENP‐I dramatically reduced the functional activity to interact with CENP‐H and CENP‐M. Mutations of the conserved residues on the helix in human CENP‐I significantly weakened the binding to CENP‐M, but not CENP‐H, in HeLa cells. Therefore, our findings for the first time unveiled a conserved helix of CENP‐I, which is important for the intramolecular interaction and function, and would be helpful for understanding the structure basis of how CENP‐I mediates the kinetochore assembly during cell cycle and mitosis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here