Premium
Molecular insights on analogs of HIV PR inhibitors toward HTLV‐1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV‐1 PR
Author(s) -
Selvaraj Chandrabose,
Singh Poonam,
Singh Sanjeev Kumar
Publication year - 2014
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.2395
Subject(s) - mutant , protease , hiv 1 protease , virology , enzyme , mutation , biology , chemistry , genetics , biochemistry , gene
Retroviruses HTLV‐1 and HIV‐1 are the primary causative agents of fatal adult T‐cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV‐1 PR inhibitors, the protease of HTLV‐1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV‐1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV‐1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV‐1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV‐1 PR binding pocket. Copyright © 2014 John Wiley & Sons, Ltd.