z-logo
Premium
Reconciliation of classical and reacted‐site probability approaches to allowance for ligand multivalence in binding studies
Author(s) -
Lollar Pete,
Winzor Donald J.
Publication year - 2014
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.2335
Subject(s) - equivalence (formal languages) , ligand (biochemistry) , chemistry , mathematics , computational chemistry , pure mathematics , biochemistry , receptor
The objective of this investigation is to engender greater confidence in the validity of binding equations derived for multivalent ligands on the basis of reacted‐site probability theory. To that end, a demonstration of the theoretical interconnection between expressions derived by the classical stepwise equilibria and reacted‐site probability approaches for univalent ligands is followed by the use of the traditional stepwise procedure to derive binding equations for bivalent and trivalent ligands. As well as demonstrating the unwieldy nature of the classical binding equation for multivalent ligand systems, that exercise has allowed numerical simulation to be used to illustrate the equivalence of binding curves generated by the two approaches. The advantages of employing a redefined binding function for multivalent ligands are also confirmed by subjecting the simulated results to a published analytical procedure that has long been overlooked. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here