Premium
IgGs containing light chains of the λ and κ type and of all subclasses (IgG1‐IgG4) from sera of patients with multiple sclerosis hydrolyze DNA
Author(s) -
Parkhomenko Taisiya A.,
Legostaeva Galina A.,
Doronin Boris M.,
Buneva Valenti.,
Nevinsky Georgy A.
Publication year - 2010
Publication title -
journal of molecular recognition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 79
eISSN - 1099-1352
pISSN - 0952-3499
DOI - 10.1002/jmr.1016
Subject(s) - dna , immunoglobulin light chain , chemistry , antibody , hydrolysis , multiple sclerosis , microbiology and biotechnology , biochemistry , immunology , biology
We present the first evidence demonstrating that small fractions of IgGs of all four subclasses (IgG1–IgG4) are catalytically active in the hydrolysis of DNA and on average their relative activity (nM supercoiled DNA/1mg IgG/1 h) increases in the order: IgG1 (0.58) < IgG2 (0.94) < IgG3 (1.4) < IgG4 (4.1), while their approximate relative contribution to the total activity of abzymes increases in the order: IgG1 (6.9%) < IgG3 (9.3%) < IgG2 (18.2%) < IgG4 (65.6%). On average IgGs containing light chains of the λ‐type are severalfold more active in the hydrolysis of DNA than IgGs with light chains of the κ‐type. Using different physicochemical methods of antibody analysis we have shown that the immune system of multiple sclerosis patients generates a variety of anti‐DNA abzymes of different type and with different catalytic properties, which can play an important role in multiple sclerosis pathogenesis. Copyright © 2010 John Wiley & Sons, Ltd.