Premium
Burrowing with a kinetic snout in a snake (Elapidae: Aspidelaps scutatus )
Author(s) -
Deufel Alexandra
Publication year - 2017
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.20743
Subject(s) - fossorial , anatomy , biology , snout , skull , flatworm , paleontology
Of the few elongate, fossorial vertebrates that have been examined for their burrowing mechanics, all were found to use an akinetic, reinforced skull to push into the soil, powered mostly by trunk muscles. Reinforced skulls were considered essential for head‐first burrowing. In contrast, I found that the skull of the fossorial shield‐nosed cobra ( Aspidelaps scutatus ) is not reinforced and retains the kinetic potential typical of many non‐fossorial snakes. Aspidelaps scutatus burrows using a greatly enlarged rostral scale that is attached to a kinetic snout that is independently mobile with respect to the rest of the skull. Two mechanisms of burrowing are used: (1) anteriorly directed head thrusts from a loosely bent body that is anchored against the walls of the tunnel by friction, and (2) side‐to‐side shovelling using the head and rostral scale. The premaxilla, to which the rostral scale is attached, lacks any direct muscle attachments. Rostral scale movements are powered by, first, retractions of the palato‐pterygoid bar, mediated by a ligament that connects the anterior end of the palatine to the transverse process of the premaxilla and, second, by contraction of a previously undescribed muscle slip of the m. retractor pterygoidei that inserts on the skin at the edge of the rostral scale. In derived snakes, palatomaxillary movements are highly conserved and power prey capture and transport behaviors. Aspidelaps scutatus has co‐opted those mechanisms for the unrelated function of burrowing without compromising the original feeding functions, showing the potential for evolution of functional innovations in highly conserved systems.