z-logo
Premium
Unusual way of feeding by the deutonymph of Neottialges evansi (Actinotrichida, Astigmata, Hypoderatidae), a subcutaneous parasite of cormorants, revealed by fine structural analyses
Author(s) -
Alberti Gerd,
Kanarek Gerard,
Dabert Jacek
Publication year - 2016
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.20584
Subject(s) - arthropod mouthparts , biology , midgut , integumentary system , hindgut , integument , anatomy , foregut , parasite hosting , air sacs , zoology , botany , larva , world wide web , computer science
The parasitic deutonymphs of hypoderatid mites live within the subcutaneous layer of their avian hosts, where they become greatly engorged despite not having functional mouthparts. The method by which they take up nutrients has been mysterious up to now. Here, we report on the morphology of hypoderatid deutonymphs using scanning and transmission electron microscopy and describe structures that may resolve the mystery. The deutonymph of Neottialges evansi (Hypoderatidae) from the cormorant Phalacrocorax carbo is a simply organized stage lacking both mouthparts and a functional foregut. The structure of midgut and hindgut indicate that they are not capable of processing food. The midgut consists of highly branching flat cells and rarely shows a lumen. Almost the entire space between integument, gut remnants and other organs (synganglion, developing gonads) is filled by huge cells containing protein and glycogen granules and numerous lipid inclusions. The anal opening is minute. The structure of the cuticle and epidermis suggests that nutrients are not absorbed through the general integument. Thus the two main existing hypotheses about feeding modes in hypoderatid deutonymphs, anal vs. integumentary food absorbtion, are not supported. We suggest instead that two pairs of genital papillae showing peculiar microanatomical features are actively involved in movement of liquid materials between host and mite and most probably are the nutrient‐intake organs. J. Morphol. 277:1368–1389, 2016. © 2016 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here