z-logo
Premium
Immunogold labeling shows that glycine‐cysteine‐rich beta‐proteins are deposited in the O berhäutchen layer of snake epidermis in preparation to shedding
Author(s) -
Alibardi Lorenzo
Publication year - 2015
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.20327
Subject(s) - epidermis (zoology) , biology , immunogold labelling , glycine , microbiology and biotechnology , beta (programming language) , cysteine , ultrastructure , biophysics , anatomy , biochemistry , amino acid , enzyme , computer science , programming language
Shedding in snakes is cyclical and derives from the differentiation of an intraepidermal shedding complex made of two different layers, termed clear and Oberhäutchen that determine the separation between the outer from the inner epidermal generation that produces a molt. The present comparative immunocytochemical study on the epidermis and molts of different species of snakes shows that a glycine‐cysteine‐rich corneous beta‐protein in a snake is prevalently accumulated in cells of the Oberhäutchen layer and decreases in those of the beta‐layer. The protein is variably distributed in the mature beta‐layer of species representing some snake families when the beta‐layer merges with the Oberhäutchen but disappears in alpha‐layers. Therefore, this protein represents an early marker of the transition between the outer and the inner epidermal generations in the epidermis of snakes in general. It is hypothesized that specific gene activation for glycine‐cysteine‐rich corneous beta‐proteins occurs during the passage from the clear layer of the outer epidermal generation to the Oberhäutchen layer of the replacing inner epidermal generation. It is suggested that in the epidermis of most species glycine‐cysteine‐rich corneous beta‐proteins form part of the dense corneous material that rapidly accumulates in the differentiating Oberhäutchen cells but decreases in the following beta‐layer of the inner epidermal generation destined to be separated from the previous outer generation in the process of shedding. The regulation of the synthesis of these and other proteins is, therefore, crucial in timing the different stages of the shedding cycle in lepidosaurian reptiles. J. Morphol. 276:144–151, 2015. © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here