z-logo
Premium
The formation of the nervous system during larval development in Triops cancriformis (Bosc) (crustacea, Branchiopoda): An immunohistochemical survey
Author(s) -
Fritsch Martin,
Richter Stefan
Publication year - 2010
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.10892
Subject(s) - biology , commissure , anatomy , nervous system , zoology , neuroscience
We provide data of the development of thenervous system during the first five larval stages of Triops cancriformis . We use immunohistochemical labeling (against acetylated α‐tubulin, serotonin, histamine, and FMRFamide), confocal laser scanning microscopy analysis, and 3D‐reconstruction. The development of the nervous system corresponds with the general anamorphic development in T. cancriformis . In larval stage I (L I), all brain parts (proto‐, deuto‐, and tritocerebrum), the circumoral connectives, and the mandibular neuromere are already present. Also, the frontal filaments and the developing nauplius eye are already present. However, until stage L III, the nauplius eye only consists of three cups. Throughout larval development, the protocerebral network differentiates into distinct subdivisions. In the postnaupliar region, additional neuromeres and their commissures emerge in an anteroposterior gradient. The larval nervous system in L V consists of a differentiated protocerebrum including a central body, a nauplius eye comprising four cups, a circumoral nerve ring, mandibular‐ and postnaupliar neuromeres up to the seventh thoracic segment, each featuring an anterior and a posterior commissure, and two parallel connectives. The presence of a protocerebral bridge is questionable. The distribution of neurotransmitters in L I is restricted to the naupliar nervous system. Over the course of the five stages of development, neurotransmitter distribution also follows an anteroposterior gradient. Each neuromere is equipped with two ganglia innervating the locomotional appendages and possesses a specific neurotransmitter distribution pattern. We suggest a correlation between neurotransmitter expression and locomotion. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here