Premium
Structure of the scales of Dermophis and Microcaecilia (Amphibia: Gymnophiona), and a comparison to dermal ossifications of other vertebrates
Author(s) -
Zylberberg Louise,
Wake Marvalee H.
Publication year - 1990
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1052060104
Subject(s) - biology , connective tissue , anatomy , mineralization (soil science) , ecology , soil water , genetics
Abstract The structures of the dermal scales and the cells surrounding the scales in two species of gymnophione amphibians were studied using histochemistry and light, scanning and transmission electron microscopy. Scales are composed of a basal platt of several layers of unmineralized collagenous fibers topped with mineralized squamulae. Squamulae are composed of numerous mineralized globules and mineralized, thick collagen fibers. Mineralization is therefore both spheritic and inotropic. Isolated flattened cells lie on the outer surface of the squamulae and seem to be involved in mineral deposition. Cells that line the basal plate synthesize the collagenous stroma of the plate. Each scale lies in a thin connective tissue pocket, and a large connective tissue pouch includes several scales in each annulus. The similarities of gymnophione scales to elasmoid scales of osteichthyans are largely superficial. Aspects of mineralization and of pocket development differ considerably. There are also similarities, as well as differences, in the gymnophione scales and osteoderms of amphibians and of reptiles. We consider that such dermal structures have arisen many times in diverse lineages of vertebrates, and that these are expressions of properties of dermal collagen to support mineralization by specialized dermal cells. However, we recommend that the term “dermal scale” be used for the mineralized dermal units of osteichthyans and gymnophiones, and “osteoderm” for the dermal structures of frogs and squamates, with the understanding that the terminology recognizes certain convergent attributes of shape and structure, but not of process.