Premium
Neuronal differentiation in the thalamic area triangularis of a lizard
Author(s) -
Medina Loreta M.,
Trujillo Carmen Maria,
Diaz Carmen,
Puelles Luis
Publication year - 1990
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1052050112
Subject(s) - biology , neuroblast , anatomy , appendage , neuroscience , filopodia , neurogenesis , microbiology and biotechnology , actin
Development of neurons in the area triangularis of Gallotia galloti was investigated in Golgi‐impregnated brain tissue. Four major neuronal types present in adults were found to originate from two migratory neuroblast types, which were followed from embryonic stage S.32. One type has a thick main medial process, whereas the second type has a long main lateral process. As they migrate toward the periphery of the nucleus, morphological characteristics of maturation appear, including growth cones, filopodia, and outgrowth of axons. Neuroblasts with a main lateral process differentiate into two immature neuronal types, bipolars and pyramidals, observed at S.33 and thereafter. The neuroblasts with a main medial process undergo some somatic translocation through a transitory tangential shaft. Then they develop into monopolar immature forms with a long varicose medial, process, appearing from S.36. onward. Immature bipolar neurons do not experience great changes in their dendritic arborization during development to the adult stage, but pyramidals and monopolars undergo a rapid development of the dendritic tree after S.36. By S.38 archetypes of adult neuronal forms are established. Hairlike appendages first appear on neurons at S.36 They decrease suddenly in S.38 and then proliferate in S.39 when spines first appear. Around the time of hatching, the hairlike appendages begin to disappear and spines become established. Reduction of spines occurs after hatching and continues to the adult stage. Possible influences of several external factors on neuronal maturation are discussed.