Premium
Maturation and aging of adult fat body and oenocytes in Drosophila as revealed by light microscopic morphometry
Author(s) -
Johnson M. B.,
Butterworth F. M.
Publication year - 1985
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051840106
Subject(s) - biology , lipid droplet , cytoplasm , drosophila melanogaster , fat body , glycogen , ultrastructure , anatomy , microbiology and biotechnology , endocrinology , genetics , gene
A morphological and cytometric analysis of the adult fat body cells and oenocytes was made on sections of abdomens from immature, mature and senescent Drosophila melanogaster of both sexes. There are about 18,000 fat body cells in abdomens of female and mature male flies. Immature and senescent males have about 12,000 and 15,000 cells, respectively. The size of the cells is almost the same for immature flies of both sexes and increases about six‐fold to approximately 2600μm 2 , so that mature flies of both sexes have equivalent amounts of fat body tissue. The proportions of lipid, glycogen, and background cytoplasm of fat body cells also remain relatively constant throughout adult life, but dense, proteinaceous granules are observed in cells of senescent flies. The amounts of cellular components change dramatically due to change of cell size with age; the amount of lipid shows the greatest sexual difference with about 2 × more in the females at all stages studied. The oenocytes number about 6,000 in the abdomens of all but immature male flies, which have approximately 4,000. Although the cells of both sexes triple in size to about 700 μm 2 , the oenocytes of males reach maximum size earlier than those of females. The major features of oenocytes appear to be dense background cytoplasm, putative lipid droplets found only in mature flies, and pigmented granules first seen in the cells of mature flies which accumulate with age to 33% of the cytoplasm. The number of cells and their anticipated capacity for protein synthesis is discussed in relation to the production of yolk protein precursors.