Premium
Structure, crystallography, and morphogenesis of the cryptic shell of the terrestrial slug Limax maximus (Mollusca, gastropoda)
Author(s) -
Furbish Dean Russel,
Furbish William James
Publication year - 1984
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/jmor.1051800304
Subject(s) - shell (structure) , biology , morphogenesis , anatomy , biomineralization , gastropoda , crystallization , dorsum , nucleation , morphology (biology) , reticulate , biophysics , crystallography , paleontology , materials science , composite material , chemistry , biochemistry , organic chemistry , gene
The structure and crystallography of the internal shell of the pulmonate gastropod slug Limax maximus were studied at the levels of light and scanning electron microscopy, revealing patterns of shell ontogeny and morphogenesis. The calcified portion of the slightly convex ovoid shell is composed of a single palisade layer of calcitic crystals. Numerous projections, 100 μm in width at the dorsal tip, are found on the dorsal surface of the shell and coincide with local nucleation sites of primordial calcium salt deposition onto the periostracum. With continued calcification these projections coalesce ventrally, forming the single crystalline shell layer. The organic portion of the shell includes the periostracum and an extensive PAS‐staining conchiolin. In EDTA‐etched preparations, conchiolin appears as a spongy network of fibers throughout the shell. Both horizontal and vertical components of the conchiolin are present, the former of variable thickness and occurring in an intercrystalline manner, the latter always occurring normal to the horizontal set. Macromorphogenic growth is characterized by three distinct temporal stages. Primary growth occurs radially from the umbonal region. Secondary growth is synonymous with shell thickening. Tertiary growth is characterized by both a lateral component, in which the shell extends beyond the primary growth boundaries, and a ventral component, in which the shell continues to grow in thickness. SEM of the ventral shell surface reveals a pattern of growth at the crystalmatrix interface. Proteinaceous fibers of the conchiolin occur unidirectionally in horizontal rows. Zones of incipient calcitic crystallization onto these hypostracal fiber bundles are contrasted by zones of increasing crystallization until the fibrous template (reduced hypostracum) is completely covered by crystals.